Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2193452

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
2.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1705325

RESUMEN

BackgroundAdenovirus-vectored (Ad-vectored) vaccines are typically administered via i.m. injection to humans and are incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized, and its ability to induce mucosal immunity in humans is unknown. This phase Ib trial evaluated the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or i.m. injection.MethodsThirty-one healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb Solo Nebulizer or by i.m. injection. The study consisted of the low-dose (LD) aerosol, high-dose (HD) aerosol, and i.m. groups. The adverse events were assessed at various times after vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline, as well as at select time points after vaccination.ResultsThe nebulized aerosol droplets were < 5.39 µm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and i.m. injection were safe and well tolerated. Both aerosol doses, particularly LD, but not i.m., vaccination markedly induced airway tissue-resident memory CD4+ and CD8+ T cells of polyfunctionality. While as expected, i.m. vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages.ConclusionInhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens, including TB and COVID-19.Trial registrationClinicalTrial.gov, NCT02337270.FundingThe Canadian Institutes for Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada funded this work.


Asunto(s)
Aerosoles/farmacología , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Administración por Inhalación , Adolescente , Adulto , Aerosoles/administración & dosificación , Anticuerpos Neutralizantes/sangre , Vacuna BCG/inmunología , COVID-19/inmunología , Femenino , Humanos , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Tuberculosis/inmunología , Vacunación/métodos , Adulto Joven
3.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1625188

RESUMEN

Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Mucosa/inmunología , Membrana Mucosa/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/inmunología , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Virulencia
4.
Front Immunol ; 12: 781280, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1608387

RESUMEN

The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Mucosa/inmunología , SARS-CoV-2/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vesículas Citoplasmáticas/inmunología , Femenino , Humanos , Inmunoglobulina A/inmunología , Mesocricetus , Ratones Endogámicos BALB C , Neisseria meningitidis/inmunología , Pandemias/prevención & control , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunación/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
5.
Front Immunol ; 12: 761949, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581340

RESUMEN

The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer's patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer's patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer's patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.


Asunto(s)
COVID-19 , Inmunidad Mucosa/inmunología , Inmunosenescencia/inmunología , Células de Paneth/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Diferenciación Celular/inmunología , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2
6.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1487771

RESUMEN

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.


Asunto(s)
Inmunidad Mucosa/inmunología , Inmunoglobulina A/metabolismo , Interleucina-6/inmunología , Vacunas/inmunología , Administración Intranasal , Animales , Formación de Anticuerpos/efectos de los fármacos , Antígenos/inmunología , COVID-19/prevención & control , Cationes/inmunología , Cationes/uso terapéutico , Ácidos Grasos Monoinsaturados/inmunología , Ácidos Grasos Monoinsaturados/uso terapéutico , Femenino , Inmunidad Mucosa/efectos de los fármacos , Inmunoglobulina G/sangre , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Liposomas/inmunología , Liposomas/uso terapéutico , Ratones , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Ovalbúmina/inmunología , Compuestos de Amonio Cuaternario/inmunología , Compuestos de Amonio Cuaternario/uso terapéutico , Bazo/metabolismo , Vacunas/administración & dosificación
7.
Curr Top Microbiol Immunol ; 426: 21-43, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1451909

RESUMEN

Pulmonary respiration inevitably exposes the mucosal surface of the lung to potentially noxious stimuli, including pathogens, allergens, and particulates, each of which can trigger pulmonary damage and inflammation. As inflammation resolves, B and T lymphocytes often aggregate around large bronchi to form inducible Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated by a diverse array of molecular pathways that converge on the activation and differentiation of chemokine-expressing stromal cells that serve as the scaffolding for iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood, exposes them to local antigens, in this case from the airways, and supports their activation and differentiation into effector cells. The activity of iBALT is demonstrably beneficial for the clearance of respiratory pathogens; however, it is less clear whether it dampens or exacerbates inflammatory responses to non-infectious agents. Here, we review the evidence regarding the role of iBALT in pulmonary immunity and propose that the final outcome depends on the context of the disease.


Asunto(s)
Bronquios/inmunología , Inmunidad Mucosa/inmunología , Respiración/inmunología , Humanos , Linfocitos/inmunología
8.
Front Immunol ; 12: 672523, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1389182

RESUMEN

Lower respiratory infections are among the leading causes of morbidity and mortality worldwide. These potentially deadly infections are further exacerbated due to the growing incidence of antimicrobial resistance. To combat these infections there is a need to better understand immune mechanisms that promote microbial clearance. This need in the context of lung infections has been further heightened with the emergence of SARS-CoV-2. Group 3 innate lymphoid cells (ILC3s) are a recently discovered tissue resident innate immune cell found at mucosal sites that respond rapidly in the event of an infection. ILC3s have clear roles in regulating mucosal immunity and tissue homeostasis in the intestine, though the immunological functions in lungs remain unclear. It has been demonstrated in both viral and bacterial pneumonia that stimulated ILC3s secrete the cytokines IL-17 and IL-22 to promote both microbial clearance as well as tissue repair. In this review, we will evaluate regulation of ILC3s during inflammation and discuss recent studies that examine ILC3 function in the context of both bacterial and viral pulmonary infections.


Asunto(s)
COVID-19/inmunología , Inmunidad Mucosa/inmunología , Linfocitos/inmunología , Neumonía Bacteriana/inmunología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Bacterias/inmunología , COVID-19/mortalidad , COVID-19/patología , Inmunidad Innata/inmunología , Inflamación/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Pulmón/inmunología , Activación de Linfocitos/inmunología , Mucosa Respiratoria/citología
9.
Front Immunol ; 11: 618685, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1389172

RESUMEN

Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunidad Humoral/inmunología , Inmunidad Mucosa/inmunología , Mucosa Nasal/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Convalecencia , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Adulto Joven
10.
mBio ; 12(4): e0159821, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1360544

RESUMEN

The gut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here, we found that disruption of nasal bacteria by intranasal application of antibiotics before influenza virus infection enhanced the virus-specific antibody response in a MyD88-dependent manner. Similarly, disruption of nasal bacteria by lysozyme enhanced antibody responses to intranasally administered influenza virus hemagglutinin (HA) vaccine in a MyD88-dependent manner, suggesting that intranasal application of antibiotics or lysozyme could release bacterial pathogen-associated molecular patterns (PAMPs) from disrupted nasal bacteria that act as mucosal adjuvants by activating the MyD88 signaling pathway. Since commensal bacteria in the nasal mucosal surface were significantly lower than those in the oral cavity, intranasal administration of HA vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to an intranasally administered HA vaccine. Finally, we demonstrated that oral bacteria combined with an intranasal vaccine protect from influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our results reveal the role of nasal bacteria in the induction of the virus-specific adaptive immunity and provide clues for developing better intranasal vaccines. IMPORTANCE Intranasal vaccination induces the nasal IgA antibody which is protective against respiratory viruses, such as influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, understanding how mucosal immune responses are elicited following viral infection is important for developing better vaccines. Here, we focused on the role of nasal commensal bacteria in the induction of immune responses following influenza virus infection. To deplete nasal bacteria, we intranasally administered antibiotics to mice before influenza virus infection and found that antibiotic-induced disruption of nasal bacteria could release bacterial components which stimulate the virus-specific antibody responses. Since commensal bacteria in nasal mucosa were significantly lower than those in the oral cavity, intranasal administration of split virus vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to the intranasally administered vaccine. Therefore, both integrity and amounts of nasal bacteria may be critical for an effective intranasal vaccine.


Asunto(s)
Bacterias/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la Influenza/inmunología , Mucosa Nasal/microbiología , Infecciones por Orthomyxoviridae/prevención & control , Inmunidad Adaptativa/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Mucosa/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/metabolismo , Mucosa Nasal/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Células Vero
11.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1345645

RESUMEN

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , COVID-19/inmunología , COVID-19/terapia , Inhibidores Enzimáticos/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/efectos de los fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Células TH1/inmunología , Tratamiento Farmacológico de COVID-19
12.
Drug Discov Today ; 26(11): 2619-2636, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1330754

RESUMEN

Unlike conventional Coronavirus 2019 (COVID-19) vaccines, intranasal vaccines display a superior advantage because the nasal mucosa is often the initial site of infection. Preclinical and clinical studies concerning intranasal immunization elicit high neutralizing antibody generation and mucosal IgA and T cell responses that avoid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in both; the upper and lower respiratory tract. A nasal formulation is non-invasive with high appeal to patients. Intranasal vaccines enable self-administration and can be designed to survive at ambient temperatures, thereby simplifying logistical aspects of transport and storage. In this review, we provide an overview of nasal vaccines with a focus on formulation development as well as ongoing preclinical and clinical studies for SARS-CoV-2 intranasal vaccine products.


Asunto(s)
Administración Intranasal , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Desarrollo de Medicamentos , Adyuvantes de Vacunas , Células Presentadoras de Antígenos/inmunología , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Inmunidad Mucosa/inmunología , Inmunogenicidad Vacunal , Inmunoglobulina A/inmunología , SARS-CoV-2 , Linfocitos T/inmunología
13.
Sci Rep ; 11(1): 14917, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1320238

RESUMEN

We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses. Finally, we used a combined SC plus IN (SC + IN) prime with or without a boost and found the SC + IN prime alone to be as effective in generating humoral and T-cell responses as the SC + IN prime with a boost. The finding that SC + IN prime-only delivery has the potential to provide broad immunity-including mucosal immunity-against SARS-CoV-2 supports further testing of this vaccine and delivery approach in animal models of viral challenge.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Femenino , Vectores Genéticos , Hipodermoclisis , Inmunidad Celular/inmunología , Inmunidad Mucosa/inmunología , Inmunización Secundaria , Ratones , Ratones Endogámicos , Vacunación/métodos
14.
Mol Pharm ; 18(6): 2233-2241, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1233685

RESUMEN

Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Portadores de Fármacos/farmacología , Inulina/farmacología , Adyuvantes Inmunológicos/química , Administración Intranasal , Animales , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Células Cultivadas , Portadores de Fármacos/química , Evaluación Preclínica de Medicamentos , Humanos , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Inmunogenicidad Vacunal , Inulina/química , Inulina/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Nanopartículas/química , Cultivo Primario de Células , SARS-CoV-2/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética
15.
Isr Med Assoc J ; 23(4): 208-211, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1200569

RESUMEN

BACKGROUND: This mini review includes two case descriptions. It introduces the use of chicken egg yolk antibody (IgY) solutions in the prevention and cure of viral and bacterial infections. Application for the protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), rotavirus, and influenza viruses, as well as for the eradication of Pseudomonas aeruginosa, caries, various enteric bacteria and other pathogens, and toxins have been developed. This approach is a fast, reliable, safe, and tested method for producing molecular shield and protection against emerging pathogens and epidemics. In the current pandemic situation caused by coronavirus disease-2019 (COVID-19), this method of passive immunization could be applied for rapid protection against modifiable agents. The specific IgY antibodies start to accumulate into egg yolks about 3 weeks after the immunization of the chicken. The product can be collected safely, as the antigen is not found in the eggs. This method for microbial safety uses natural means and commonly used food substances, which have been tested and could be produced for both blocking epidemics and applying personalized medicine.


Asunto(s)
Anticuerpos/uso terapéutico , COVID-19/prevención & control , Yema de Huevo/inmunología , Inmunización Pasiva/métodos , Inmunoglobulinas/inmunología , Animales , Infecciones Bacterianas/prevención & control , Pollos , Humanos , Inmunidad Mucosa/inmunología , Recién Nacido , Virosis/prevención & control
16.
Int Immunopharmacol ; 93: 107406, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1049806

RESUMEN

In patients with COVID-19,type 2 diabetes mellitus (T2DM) can impair the function of nasal-associated lymphoid tissue (NALT) and result in olfactory dysfunction. Exploring the causative alterations of T2DM within the nasal mucosa and NALT could provide insight into the pathogenic mechanisms and bridge the gap between innate immunity and adaptive immunity for virus clearance. Here, we designed a case-control study to compare the olfactory function (OF) among the groups of normal control (NC), COVID-19 mild pneumonia (MP), and MP patients with T2DM (MPT) after a 6-8 months' recovery, in which MPT had a higher risk of hyposmia than MP and NC. No significant difference was found between the MP and NC. This elevated risk of hyposmia indicated that T2DM increased COVID-19 susceptibility in the nasal cavity with unknown causations. Therefore, we used the T2DM animal model (db/db mice) to evaluate how T2DM increased COVID-19 associated susceptibilities in the nasal mucosa and lymphoid tissues. Db/db mice demonstratedupregulated microvasculature ACE2 expression and significant alterations in lymphocytes component of NALT. Specifically, db/db mice NALT had increased immune-suppressive TCRγδ+ CD4-CD8- T and decreased immune-effective CD4+/CD8+ TCRß+ T cells and decreased mucosa-protective CD19+ B cells. These results indicated that T2DM could dampen the first-line defense of nasal immunity, and further mechanic studies of metabolic damage and NALT restoration should be one of the highest importance for COVID-19 healing.


Asunto(s)
Anosmia/inmunología , Anosmia/virología , COVID-19/inmunología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/virología , Adulto , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anosmia/metabolismo , Linfocitos B/inmunología , COVID-19/metabolismo , COVID-19/fisiopatología , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Inmunidad Mucosa/inmunología , Tejido Linfoide/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Modelos Animales , Mucosa Nasal/inmunología , Mucosa Olfatoria/metabolismo , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Serina Endopeptidasas/metabolismo , Linfocitos T/inmunología
17.
ACS Appl Bio Mater ; 3(9): 5633-5638, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1047923

RESUMEN

To combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we formulated the S1 subunit of the virus with two adjuvants, amphiphilic adjuvant monophosphoryl lipid A for Toll-like receptor 4 and CpG oligodeoxynucleotide for Toll-like receptor 9, into cationic liposomes to produce a potent, safer, and translatable nanovaccine. The nanovaccine can efficiently elicit a humoral immune response and strong IgA antibodies in mice. The sera from the vaccinated mice significantly inhibit SARS-CoV-2 from infecting Vero cells. Moreover, relative to the free S1 with a traditional Alum adjuvant, the nanovaccine can elicit strong T-cell immunity by activating both CD4+ and CD8+ cells.


Asunto(s)
COVID-19/inmunología , Inmunidad Mucosa/inmunología , Nanomedicina , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , COVID-19/virología , Chlorocebus aethiops , Femenino , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA